5-manifolds admitting rank two distributions of Cartan type
(based on joint work with Shantanu Dave)

Stefan Haller

Department of Mathematics
University of Vienna, Austria

19th ÖMG Congress and Annual DMV Meeting
Salzburg, September 14, 2017
Outline of the talk

1. A geometry in five dimensions
2. Global existence
3. Analysis of BGG sequences
A geometry in five dimensions

Definition (distributions of Cartan type on 5-manifolds)

A rank two distribution $\xi \subseteq TM$ is called of Cartan type if it is bracket generating with growth vector $(2,3,5)$, i.e., if locally there exist sections $X, Y \in \Gamma^\infty(\xi)$ such that $X, Y, [X, Y], [X, [X, Y]], [Y, [X, Y]]$ is a frame of TM.

a.k.a. generic rank two distributions in dimension five

Lie group \mathcal{N} with graded nilpotent Lie algebra $n = n_1 \oplus n_2 \oplus n_3$:

$X, Y \in n_1$, $[X, Y] \in n_2$, $[X, [X, Y]], [Y, [X, Y]] \in n_3$

$G_2/P \sim = S^2 \times S^3$ (flat model)

surface rolling on another surface (5-dim. configuration space)

without slipping and twisting (encoded in rank two distribution)

is of Cartan type iff Gaussian curvatures disjoint
A geometry in five dimensions

Definition (distributions of Cartan type on 5-manifolds)

A rank two distribution \(\xi \subseteq TM \) is called of Cartan type if it is bracket generating with growth vector \((2,3,5) \), i.e., if locally there exist sections \(X, Y \in \Gamma^\infty(\xi) \) such that \(X, Y, [X, Y], [X, [X, Y]], [Y, [X, Y]] \) is a frame of \(TM \).

a.k.a. generic rank two distributions in dimension five
A geometry in five dimensions

Definition (distributions of Cartan type on 5-manifolds)
A rank two distribution $\xi \subseteq TM$ is called of Cartan type if it is bracket generating with growth vector $(2,3,5)$, i.e., if locally there exist sections $X, Y \in \Gamma^\infty(\xi)$ such that $X, Y, [X, Y], [X, [X, Y]], [Y, [X, Y]]$ is a frame of TM.

a.k.a. generic rank two distributions in dimension five

- Lie group N with graded nilpotent Lie algebra $n = n_1 \oplus n_2 \oplus n_3$:

 $$X, Y, [X, Y], [X, [X, Y]], [Y, [X, Y]]$$

 $n_1 \quad n_2 \quad n_3$

- $G_2/P \cong S^2 \times S^3$ (flat model)

- surface rolling on another surface (5-dim. configuration space) without slipping and twisting (encoded in rank two distribution) is of Cartan type iff Gaussian curvatures disjoint
A geometry in five dimensions (cont.)

Parabolic geometry of type \((G_2, P)\):

- canonical Cartan connection
- symmetry group of dimension at most 14
- Cartan’s curvature tensor (a section of \(S^4\xi^*\)) vanishes iff locally diffeomorphic to flat model \(G_2/P\)
- curved BGG sequences [Čap–Slovák–Souček]
- canonical conformal metric of signature \((2, 3)\) with conformal holonomy contained in \(G_2\) [Nurowski]
Parabolic geometry of type (G_2, P):
- canonical Cartan connection
- symmetry group of dimension at most 14
- Cartan’s curvature tensor (a section of $S^4\xi^*$) vanishes iff locally diffeomorphic to flat model G_2/P
- curved BGG sequences [Čap–Slovák–Souček]
- canonical conformal metric of signature $(2, 3)$ with conformal holonomy contained in G_2 [Nurowski]

Filtered manifold: $0 \subseteq \xi \subseteq \eta \subseteq TM$ of type $(2, 3, 5)$
induced (tensorial) Levi bracket on

$$\text{gr}(TM) = \xi \oplus (\eta/\xi) \oplus (TM/\eta)$$

osculating algebras $\text{gr}(T_xM) \cong n = n_1 \oplus n_2 \oplus n_3$
Existence of global structure

Basic question
Which 5-manifolds admit rank two distribution of Cartan type?
Existence of global structure

Basic question
Which 5-manifolds admit rank two distribution of Cartan type?

Results for contact and Engel structures:
- On open manifolds the inclusion
 \[\{\text{contact structures}\} \subseteq \{\text{almost contact structures}\} \]
 is a (weak) homotopy equivalence [Gromov’s h-principle]
- Closed oriented 3-manifolds admit contact structures [Lutz-Martinez]
- Dichotomy on closed 3-manifolds: tight — overtwisted
 For a fixed embedded disc \(D^2\) the inclusion
 \[\{\text{overtwisted contact structures with overtwisted disc } D^2\} \subseteq \{\text{almost contact structures with overtwisted disc } D^2\} \]
 is a (weak) homotopy equivalence [Eliashberg]
- Similar picture in all odd dimensions [Borman–Eliashberg–Murphy]
- Every parallelizable 4-manifold admits Engel structure [Vogel]
 i.e. rank two distribution with growth vector \((2, 3, 4)\)
If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then $TM \cong \xi \oplus \varepsilon_1 \oplus \xi$. (1)

In particular, M spinnable and $\frac{1}{2}p_1(M) = e(\xi)^2$.

If M closed, then $\int M = 0 = k(M) = \sum_{q \text{ even}} \dim H^q(M; \mathbb{R}) \mod 2$.

Theorem (Dave and H.)

a) If M open, spinnable, and $\frac{1}{2}p_1(M) = e(\xi)^2$, then (1) holds.

b) If M closed, spinnable, $\frac{1}{2}p_1(M) = e(\xi)^2$, and $k(M) = 0$, then (1) holds.

Proof.

a) $\frac{1}{2}p_1: \text{BSpin}(5) \to K(\mathbb{Z}, 4)$ is 5-equivalence.

5-manifolds admitting distribution of Cartan type

If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then

$$TM \cong \xi \oplus \varepsilon^1 \oplus \xi.$$ \hspace{1cm} (1)

In particular, M is spinnable and

$$\frac{1}{2} p_1(M) = e(\xi) \mod 2.$$

If M is closed, then [Atiyah]

$$0 = k(M) = \sum_{\text{even} q} \dim H^q(M; \mathbb{R}) \mod 2.$$

Theorem (Dave and H.)

a) If M is open, spinnable, and

$$\frac{1}{2} p_1(M) = e(\xi) \mod 2,$$

then (1) holds.

b) If M is closed, spinnable,

$$\frac{1}{2} p_1(M) = e(\xi) \mod 2,$$

and $k(M) = 0$, then (1) holds.

Proof.

a) $\frac{1}{2} p_1: BSpin(5) \to K(\mathbb{Z}, 4)$ is 5-equivalence

5-manifolds admitting distribution of Cartan type

If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then

$$TM \cong \xi \oplus \varepsilon^1 \oplus \xi.$$ \hspace{1cm} (1)

In particular, M spinnable and

$$\frac{1}{2} p_1(M) = e(\xi)^2.$$
5-manifolds admitting distribution of Cartan type

If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then

$$TM \cong \xi \oplus \varepsilon^1 \oplus \xi.$$

(1)

In particular, M spinnable and

$$\frac{1}{2} p_1(M) = e(\xi)^2.$$

If M closed, then [Atiyah]

$$0 = k(M) = \sum_{q \text{ even}} \dim H^q(M; \mathbb{R}) \mod 2.$$
If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then
\[TM \cong \xi \oplus \varepsilon^1 \oplus \xi. \tag{1} \]

In particular, M spinnable and
\[\frac{1}{2} p_1(M) = e(\xi)^2. \]

If M closed, then [Atiyah]
\[0 = k(M) = \sum_{q \text{ even}} \dim H^q(M; \mathbb{R}) \mod 2. \]

Theorem (Dave and H.)

a) If M open, spinnable, and $\frac{1}{2} p_1(M) = e(\xi)^2$, then (1) holds.
b) If M closed, spinnable, $\frac{1}{2} p_1(M) = e(\xi)^2$, and $k(M) = 0$, then (1) holds.
5-manifolds admitting distribution of Cartan type

If M admits orientable distribution of Cartan type $\xi \subseteq TM$, then

$$TM \cong \xi \oplus \varepsilon^1 \oplus \xi.$$ \hfill (1)

In particular, M spinnable and

$$\frac{1}{2} p_1(M) = e(\xi)^2.$$

If M closed, then [Atiyah]

$$0 = k(M) = \sum_{q \text{ even}} \dim H^q(M; \mathbb{R}) \mod 2.$$

\textbf{Theorem (Dave and H.)}

\begin{itemize}
 \item[a)] If M open, spinnable, and $\frac{1}{2} p_1(M) = e(\xi)^2$, then (1) holds.
 \item[b)] If M closed, spinnable, $\frac{1}{2} p_1(M) = e(\xi)^2$, and $k(M) = 0$, then (1) holds.
\end{itemize}

\textbf{Proof.}

\begin{itemize}
 \item[a)] $\frac{1}{2} p_1 : B\text{Spin}(5) \to K(\mathbb{Z}, 4)$ is 5-equivalence
 \item[b)] builds on work of Thomas, Atiyah–Dupont, and Tang–Zhang
\end{itemize}
Distributions of Cartan type on open 5-manifolds

Suppose \(M \) is an open, spinnable 5-manifold, \(e \in H^2(M; \mathbb{Z}) \) such that \(e^2 = \frac{1}{2} p_1(M) \).

Then there exists an orientable \(\xi \subseteq TM \) of Cartan type with \(e(\xi) = e \).

Proof. According to Gromov's h-principle.

\[\Gamma(J^2 Gr^2(TM) \to M) \cong \Gamma(R \to M) \cong \Gamma(F/H \to M) \]

where \(L: \mathbb{R} \to F/H \), \(H = \{ (A^{000} \det A^{000} 0 \det A) : A \in GL_2(\mathbb{R}) \} \subseteq GL_5(\mathbb{R}) \).
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose \(M \) open, spinnable 5-manifold, \(e \in H^2(M; \mathbb{Z}) \) s.t. \(e^2 = \frac{1}{2} p_1(M) \).

Then there exists orientable \(\xi \subseteq TM \) of Cartan type with \(e(\xi) = e \).
Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

$$\Gamma(\text{Gr}_2(TM) \to M) \xleftarrow{\mathcal{C}}$$
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

\[
\begin{array}{c}
\Gamma (\text{Gr}_2(TM) \to M) \leftarrow \mathcal{C} \\
\downarrow j^2 \\
\Gamma (J^2 \text{Gr}_2(TM) \to M)
\end{array}
\]
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

\[
\begin{array}{c}
\Gamma(\text{Gr}_2(TM) \to M) \leftarrow C \\
\downarrow j^2 \quad \quad \quad \quad \quad \downarrow j^2 \\
\Gamma(J^2 \text{Gr}_2(TM) \to M) \leftarrow \Gamma(\mathcal{R} \to M)
\end{array}
\]
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

\[
\begin{array}{c}
\Gamma(Gr_2(TM) \to M) \leftarrow \mathcal{C} \\
\Gamma(J^2 Gr_2(TM) \to M) \leftarrow \Gamma(R \to M)
\end{array}
\]

\[
j^2 \downarrow \quad \downarrow j^2 \quad \simeq \text{according to Gromov's h-principle}
\]
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

\[
\Gamma(\text{Gr}_2(TM) \to M) \xleftarrow{\mathcal{C}} j^2 \downarrow \xrightarrow{\mathcal{C}} \Gamma(J^2 \text{Gr}_2(TM) \to M) \xleftarrow{\Gamma(R \to M)}
\]

\[j^2 \simeq \text{according to Gromov's h-principle}\]

\[
\mathcal{L}: R \to F/H, \quad H = \left\{ \begin{pmatrix} A & * & * \\ 0 & \det A & * \\ 0 & 0 & \det(A)A \end{pmatrix} : A \in \text{GL}_2(\mathbb{R}) \right\} \subseteq \text{GL}_5(\mathbb{R})
\]
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose \(M \) open, spinnable 5-manifold, \(e \in H^2(M; \mathbb{Z}) \) s.t. \(e^2 = \frac{1}{2} p_1(M) \). Then there exists orientable \(\xi \subseteq TM \) of Cartan type with \(e(\xi) = e \).

Proof.

\[
\begin{align*}
\Gamma(\text{Gr}_2(TM) \to M) &\xleftarrow{\mathcal{C}} \\Gamma(J^2 \text{Gr}_2(TM) \to M) \\
j^2 &\xrightarrow{\text{contractible}} j^2 \\
\Gamma(J^2 \text{Gr}_2(TM) \to M) &\xleftarrow{\Gamma(\mathcal{R} \to M)} \\Gamma(\mathcal{R} \to M) \\
\mathcal{L}^* &\xrightarrow{} \Gamma(F/H \to M)
\end{align*}
\]

\(\mathcal{L} : \mathcal{R} \to F/H, \quad H = \left\{ \begin{pmatrix} A & * \\ 0 & \det A \end{pmatrix} : A \in \text{GL}_2(\mathbb{R}) \right\} \subseteq \text{GL}_5(\mathbb{R}) \)
Distributions of Cartan type on open 5-manifolds

Theorem (Dave and H.)

Suppose M open, spinnable 5-manifold, $e \in H^2(M; \mathbb{Z})$ s.t. $e^2 = \frac{1}{2} p_1(M)$. Then there exists orientable $\xi \subseteq TM$ of Cartan type with $e(\xi) = e$.

Proof.

\[
\begin{array}{ccc}
\Gamma(Gr_2(TM) \to M) & \leftarrow & \mathcal{C} \\
\downarrow j^2 & & \downarrow j^2 \\
\Gamma(J^2 Gr_2(TM) \to M) & \leftarrow & \Gamma(R \to M)
\end{array}
\]

$j^2 \simeq$ according to Gromov's h-principle

\[
\begin{array}{ccc}
\Gamma(F/H \to M) & \leftarrow & \mathcal{L} \\
\downarrow \mathcal{L}_* & & \\
\end{array}
\]

$L_* \simeq$ since fibers of L contractible

$L : R \to F/H$, $H = \left\{ \begin{pmatrix} A & 0 \\ 0 & \det A \end{pmatrix} \begin{pmatrix} * & * \\ 0 & \det(A)A \end{pmatrix} : A \in \text{GL}_2(\mathbb{R}) \right\} \subseteq \text{GL}_5(\mathbb{R})$
Existence on closed 5-manifolds

Does the h-principle hold on closed 5-manifolds, i.e., is

\[j^2 : C \to \Gamma(R \to M) \] a (weak) homotopy equivalence?

Does \((S^2 \times S^3) \# (S^2 \times S^3) \# (S^2 \times S^3)\) admit a Cartan distribution?

(smale's classification)

Does \(S^5 \{ \text{three points} \}\) admit a Cartan distribution which is asymptotically flat, i.e. all three ends are diffeomorphic to the end of the simply connected nilpotent Lie group \(N\).

Does the existence of a Cartan distribution impose restrictions on \(\frac{1}{2} \pi_1(M), \pi_1(M)\), or the Reidemeister torsion of \(M\)?

Which mapping tori admit such structures?

What kind of surgery can be performed? (analogue of Lutz twist?)

\(\Sigma \times N\) admits a Cartan distribution if \(\Sigma\) is a closed connected surface with \(\chi(\Sigma) \geq -1\) and \(N\) a closed orientable 3-manifold. [Dave-H.]

\(\Sigma \times T^3\) does not admit a principal \(T^3\)-connection whose 2-plane bundle is of Cartan type if \(\chi(\Sigma) \leq 0\). [Dave-H.]
Existence on closed 5-manifolds

Does the h-principle hold on closed 5-manifolds, i.e., is
\[j^2 : \mathcal{C} \rightarrow \Gamma(\mathcal{R} \rightarrow M) \] a (weak) homotopy equivalence?

- Does \((S^2 \times S^3) \# (S^2 \times S^3) \# (S^2 \times S^3)\) admit a Cartan distribution? (Smale’s classification)
- Does \(S^5 \setminus \{\text{three points}\}\) admit a Cartan distribution which is asymptotically flat, i.e. all three ends are diffeomorphic to the end of the simply connected nilpotent Lie group \(N\).
- Does the existence of a Cartan distribution impose restrictions on \(\frac{1}{2} p_1(M), \pi_1(M)\), or the Reidemeister torsion of \(M\)? Which mapping tori admit such structures?
- What kind of surgery can be performed? (analogue of Lutz twist?)
Existence on closed 5-manifolds

Does the h-principle hold on closed 5-manifolds, i.e., is $j^2 : C \to \Gamma(\mathcal{R} \to M)$ a (weak) homotopy equivalence?

- Does $(S^2 \times S^3) \# (S^2 \times S^3) \# (S^2 \times S^3)$ admit a Cartan distribution? (Smale’s classification)
- Does $S^5 \setminus \{\text{three points}\}$ admit a Cartan distribution which is asymptotically flat, i.e. all three ends are diffeomorphic to the end of the simply connected nilpotent Lie group N.
- Does the existence of a Cartan distribution impose restrictions on $\frac{1}{2} p_1(M)$, $\pi_1(M)$, or the Reidemeister torsion of M?
 Which mapping tori admit such structures?
- What kind of surgery can be performed? (analogue of Lutz twist?)
- $\Sigma \times N$ admits a Cartan distribution if Σ is a closed connected surface with $\chi(\Sigma) \geq -1$ and N a closed orientable 3-manifold. [Dave-H.]
- $\Sigma \times T^3$ does not admit a principal T^3-connection whose 2-plane bundle is of Cartan type if $\chi(\Sigma) \leq 0$. [Dave-H.]
Rumin type complex (BGG sequences)

Natural sequence of differential operators [Čap–Slovák–Souček]

\[
\Gamma(\mathcal{H}_0) \xrightarrow{D_0} \Gamma(\mathcal{H}_1) \xrightarrow{D_1} \Gamma(\mathcal{H}_2) \xrightarrow{D_2} \Gamma(\mathcal{H}_3) \xrightarrow{D_3} \Gamma(\mathcal{H}_4) \xrightarrow{D_4} \Gamma(\mathcal{H}_5)
\]

- $\mathcal{H}_i \to M$ natural vector bundles of ranks 1, 2, 3, 3, 2, 1
- D_i of Heisenberg order $r_i = 1, 3, 2, 3, 1$
- computes de Rham cohomology, $D_i \oplus D_i' = L \circ d_i \circ L^{-1}$
- Rumin complex not elliptic but hypoelliptic (Rockland complex)
Rumin type complex (BGG sequences)

Natural sequence of differential operators [Čap–Slovák–Souček]

\[\begin{align*}
\Gamma(H_0) & \xrightarrow{D_0} \Gamma(H_1) \xrightarrow{D_1} \Gamma(H_2) \xrightarrow{D_2} \Gamma(H_3) \xrightarrow{D_3} \Gamma(H_4) \xrightarrow{D_4} \Gamma(H_5) \\
\end{align*} \]

- \(H_i \to M \) natural vector bundles of ranks 1, 2, 3, 3, 2, 1
- \(D_i \) of Heisenberg order \(r_i = 1, 3, 2, 3, 1 \)
- computes de Rham cohomology, \(D_i \oplus D'_i = L \circ d_i \circ L^{-1} \)
- Rumin complex not elliptic but hypoelliptic (Rockland complex)
- Every BGG sequence associated with irreducible \(G_2 \)-representation is Rockland [Dave-H]. In this case \(H_i = G_0 \times G_0 H_i(p_+; E) \).
- reduction of structure group to maximal compact \(K_0 \subseteq G_0 \) induces volume density on \(M \) and Hermitian metric on \(H_i \), providing standard \(L^2 \)-inner product on \(\Gamma(H_i) \), whence formal adjoints.
Theorem (Hypoellipticity)

If \(\psi \in \Gamma^{-\infty}(\mathcal{H}_i) \) such that \(D_i \psi \) and \(D^*_i \psi \) smooth, then \(\psi \) smooth.
Analytic results

Theorem (Hypoellipticity)

If \(\psi \in \Gamma^{-\infty}({\mathcal{H}}_i) \) such that \(D_i \psi \) and \(D_{i-1}^* \psi \) smooth, then \(\psi \) smooth.

Theorem (Maximal hypoelliptic estimate)

If \(M \) closed, then \(\ker(D_i) \cap \ker(D_{i-1}^*) \subseteq \Gamma^\infty({\mathcal{H}}_i) \) finite dimensional, and

\[
\| \psi \|_s \leq C \left(\| D_i \psi \|_{s-r_i} + \| D_{i-1}^* \psi \|_{s-r_{i-1}} + \| Q \psi \| \right),
\]

where \(Q \) denotes orthogonal projection onto \(\ker(D_i) \cap \ker(D_{i-1}^*) \).
Analytic results

Theorem (Hypoellipticity)

If $\psi \in \Gamma^{-\infty}(\mathcal{H}_i)$ such that $D_i \psi$ and $D_{i-1}^* \psi$ smooth, then ψ smooth.

Theorem (Maximal hypoelliptic estimate)

If M closed, then $\ker(D_i) \cap \ker(D_{i-1}^*) \subseteq \Gamma^\infty(\mathcal{H}_i)$ finite dimensional, and

$$
\|\psi\|_s \leq C \left(\|D_i \psi\|_{s-r_i} + \|D_{i-1}^* \psi\|_{s-r_{i-1}} + \|Q \psi\| \right),
$$

where Q denotes orthogonal projection onto $\ker(D_i) \cap \ker(D_{i-1}^*)$.

Corollary (Hodge decomposition)

If M closed then each de Rham cohomology class admits unique (harmonic) representative in $\ker(D_i) \cap \ker(D_{i-1}^*)$.
Key points in the analysis

- Rumin–Seshadri operator of Heisenberg order κ
 \[\Delta := (D_i^* D_i)^{s_i} + (D_{i-1} D_{i-1}^*)^{s_i-1} \]

 where $\kappa = 2s_i r_i = 2s_{i-1} r_{i-1}$

- osculating group $\mathcal{T}_x M \cong N$, the simply connected nilpotent Lie group with Lie algebra $\text{gr}(\mathcal{T}_x M) \cong \mathfrak{n}$

- Heisenberg principal symbol $\sigma_x(\Delta)$, is a left invariant differential operator on $\mathcal{T}_x M$

- Rockland condition: $\pi(\sigma_x(\Delta))$ injective for each non-trivial irreducible unitary representation $\pi: \mathcal{T}_x M \to U(\mathcal{H})$

- Rockland theorem: $\sigma_x(\Delta)$ invertible

- Yuncken–van Erp calculus:
 \[\Psi^s \text{ pseudodifferential operators of Heisenberg order } s \]
 \[\text{parametrix } P \in \Psi^{-\kappa} \text{ such that } \Delta P - \text{id and } P \Delta - \text{id smoothing} \]

- Heisenberg–Sobolev scale: For each real s exists $\Lambda \in \Psi^s$ and $\Lambda' \in \Psi^{-s}$ such that $\Lambda \Lambda' - \text{id and } \Lambda' \Lambda - \text{id smoothing operators.}$
Applications on closed manifolds

- Schwartz kernel k_t of $e^{-t\Delta}$ is smooth and

$$k_t(x, x) \sim \sum_{j=0}^{\infty} q_j(x) t^{(j-n)/\kappa}, \quad n = 10.$$

- Δ essentially selfadjoint with compact resolvent. Weyl’s law:

$$\# \text{ eigenvalues less than } \lambda \sim \alpha \cdot \text{vol}(M) \lambda^{n/\kappa}$$
Applications on closed manifolds

- Schwartz kernel \(k_t \) of \(e^{-t\Delta} \) is smooth and

\[
k_t(x, x) \sim \sum_{j=0}^{\infty} q_j(x) t^{(j-n)/\kappa}, \quad n = 10.
\]

- \(\Delta \) essentially selfadjoint with compact resolvent. Weyl’s law:

\[
\# \text{ eigenvalues less than } \lambda \sim \alpha \cdot \text{vol}(\mathcal{M}) \lambda^{n/\kappa}
\]

- \(\zeta(s) = \text{tr}(\Delta^{-s}) \) holomorphic for \(\Re(s) > n/\kappa \), meromorphic on \(\mathbb{C} \), at most simple poles at \(s = (n - j)/\kappa \) where \(j \in \mathbb{N}_0 \), holomorphic at \(s \in \mathbb{N}_0 \)

- Rumin–Seshadri type analytic torsion, \(k_{i+1} - k_i = N_i \),

\[
\log \tau = -\frac{1}{\kappa} \sum_i (-1)^i N_i \zeta'_\Delta(0)
\]

- Dependence on reduction to \(K_0 \subset G_0 \)? Cheeger–Müller theorem?
Thank you for your attention!

Preprints (joint with Shantanu Dave):

- Graded hypoellipticity of BGG sequences.
 arXiv:1705.01659
- On 5-manifolds admitting rank two distributions of Cartan type.
 arXiv:1603.09700

Research supported by the Austrian Science Fund (FWF)
START-Project Y963-N35